和周波発生(SFG)による有機薄膜の 界面分子構造の研究

叶 深・大澤 雅俊

北海道大学触媒化学研究センター 〒 001 0021 北海道札幌市北区北 21 条西 10 丁目

(2003年11月4日受理)

Sum Frequency Generation (SFG) Studies on the Interfacial Structure of Organic Thin Films

Shen YE and Masatoshi OSAWA

Catalysis Research Center, Hokkaido University N 21 W 10, Sapporo, Hokkaido 001 0021

(Received November 4, 2003)

A highly surface-sensitive vibrational spectroscopy, sum frequency generation (SFG), has been employed to investigate the interfacial structure of the *Langmuir-Blodgett* (LB) thin films on solid substrates. The SFG measurements demonstrate that the molecular structures at the surface layer of the even-numbered LB films of stearic acid considerably change both in air and in solution when Cd^{2+} cations are present. A flip-over model is proposed to explain the Cd^{2+} induced surface reorganization process.

1.はじめに

ナノテクノロジーの一つとして、ラングミュア ブロ ジェット(LB)法等による機能性有機薄膜の作製がい ままで以上に重要になってきている。これらの有機薄膜 のバルク構造については、これまでにも赤外分光法や X 線回折・散乱法により詳しく調べられてきた^{1,2)}が、機 能性材料としての性能と安定性を大きく左右する薄膜表 面の分子構造や欠陥に関する情報はまだ非常に限られて いる。これまでは、LB 超薄膜の最外層の分子配列はそ のバルクと同じものとして認識されてきた。最近の原子 間力顕微鏡(AFM)の観察結果によると、飽和脂肪酸 LB 膜の表面形状が、水中に浸漬すると浸漬時間ともに 変化する、と報告されている³⁻⁵⁾。ただし、従来の赤外 やラマン分光法だけでは、これらの有機薄膜表面とバル クの分子構造の違いを区別するのは困難であり、表面分 子構造と材料の機能性の関連についてはまだ検討の余地 二次非線形振動分光法である和周波発生(SFG)分光 法⁶⁾では,その高い界面選択性と測定感度の故に注目を 集めており,自由電子レーザー(FEL)や超短パルスレ ーザー技術の普及とともに,種々の界面分子構造の研究 に利用され始めている⁷⁻¹⁰。

これまでに,我々はフェムト秒パルスレーザーを用い るブロードバンド SFG システムを構築し,飽和脂肪酸 分子の LB 超薄膜やリン脂質二分子膜,生体高分子薄膜 などの有機薄膜の界面分子構造の解明およびその機能性 との関係について調べてきた。本稿では,飽和脂肪酸分 子のステアリン酸(SA)の LB 超薄膜と擬似生体膜の モデルとして用いられているリン脂質分子の二分子膜の 界面分子構造について述べる。この研究の更なる展開に より,バイオマテリアルの機能性発現機構の解明や新規 材料の開発と性能評価に対して重要な指針を与えること が期待される。

が残っている。本稿では,和周波発生(SFG)を用いた 有機超薄膜の界面分子構造について述べる。

E-mail: ye@cat.hokudai.ac.jp

2.実 験

SFG は二次非線形光学効果に基づく現象であり,周 波数 ω_{vis} と ω_{IR} の二光子から,それらの周波数の和 (ω_{SFG} = ω_{vis} + ω_{IR})の一光子への変換過程である(Fig. 1)⁵)。SFG 分光法の原理の詳細については,他の総説に 委ねる^{11,12})。最大の特徴の一つとして,SFG 光は反転 対称性が壊れる界面や表面でのみ発生し,界面・表面に 極めて敏感である。特に入射光の一つを赤外領域(ω_{IR}) に置くことにより振動スペクトルが得られ,種々の界面 (固気,固液,気液および液液など)における分子 構造とそのダイナミクスの研究に応用されている^{7~10})。 同じ振動分光である赤外・ラマン分光と比較して,表面 選択性と測定感度が著しく高いところに特徴がある。

これまでの SFG 計測には,主にナノ秒或いはピコ秒 の可視(波長固定)と赤外(波長可変)のパルスレーザ ーが光源として用いられている^{7-10,13,14)}。SFG スペクト

Fig. 1 Measurement of the organic thin films by sum frequency generation (SFG).

Fig. 2 The broad-band SFG system.

ルを得るためには、赤外光の波長を走査する必要がある。 このため、測定に長時間を要する。また、これらのレー ザーはパルス幅が長く、熱効果による試料損傷の可能性 が高く、生体試料など比較的不安定な試料への適用は困 難とされてきた。一方、SFGの強度は入射光のエネル ギー密度に比例するので、フェムト秒パルスレーザーの ような超短パルス光を用いると、SFG発生効率を著し く向上させることができると同時に、熱効果による試料 へのダメージも低減することができるので、生体試料の 構造研究に適するものと考えられる。しかし、フェムト 秒パルスの周波数帯域が数百 cm⁻¹ と広く、そのままで は振動分光法としての適用は困難とされてきた。

最近,フェムト秒の可視光を狭帯域化させ,フェムト 秒の広帯域赤外光と合わせて SFG を発生する手法で, この問題が解決された15~19)。本研究で用いたブロードバ ンド SFG 分光測定システムを Fig.2 に示す¹⁹)。チタン サファイア再生増幅器 Hurricane を光源(波長: 800 nm, パルス幅: 120 fs, パルスエネルギー: 1.0 mJ, 繰返周 波数:1kHz)として用いた。その出力の一部を分光器 により切り出して,回折格子により空間チャープを補償 し,コリメートした狭帯域の可視光として出力する(半 値幅:5 gcm⁻¹~)。残った出力を波長変換装置(TOPAS) により, 3~10 μm の広帯域の赤外光を発生させる(半 値幅:~250 cm⁻¹)。赤外光と可視光を試料表面に集光 し,SFG 光を発生させる。赤外光の波長を走査せず, 相対的に広い波数領域(約250 cm⁻¹)のSFG スペクト ルを, 分光器 (f=35 cm) に取り付けた CCD 検出器に よって同時に測定する。

このように構築されたプロードバンド SFG 測定シス テムに対して改良を重ねた結果,種々の環境(空気と水 溶液)と基板温度(5~100)の条件下で,擬似生体 膜の界面分子構造の高感度計測に成功した。計測時間と S/N も従来のシステムと比べると大きく改善されてい る。例えば,従来のピコ秒 Nd:YAG レーザーを用いる 場合,金基板表面での有機単分子膜の C-H 伸縮領域の SFG スペクトルを得るには,通常約 30 分を要するが, 本システムでは 30 秒で,10 倍以上も良好な S/N を得 ることができる^{19,20}。また,フェムト秒パルスレーザー の高い時間分解能により,生体膜表面における分子構造 変化の高速ダイナミクスの追跡にも応用できると期待さ れる。

3.LB 超薄膜およびリン脂質二分子膜の界面分 子の構造評価

Fig. 3 には,空気中で観測された溶融石英基板における SAのLB 超薄膜(1,3,9,12 層)の SFG スペクト

Fig. 3 SFG spectra (open circles) and their fitting results (solid line) of the LB films of stearic acid with different thicknesses (1-, 3-, 9- and 12-layers) on a fused quartz surface in air with the polarization combination of (a) *ppp*, (b) *ssp*, and (c) *sps*. The LB films were deposited from 0.3 mM NaHCO₃ (pH = 6.8) containing 0.2 mM CdCl₂.

ルを示す^{19,21})。これらのLB 超薄膜は 0.2 mM の Cd²⁺イ オンを含む緩衝溶液中(pH=6.8)で,表面圧 30 mN/m で基板に累積した。なお, SFG光, 可視光と赤外光の 偏光状態は、(a)p-SFG、p-Vis、p-IR(以下 ppp と省略); (b) ssp;(c) sps となる。SFG スペクトルの形状は偏光 状態に大きく依存するが,同じ偏光状態では,強度とピ ーク位置は膜厚にほとんど依存せず,ほぼ一定である。 ppp 偏光では, 主に 2880, 2940 と 2968 cm⁻¹にある三 本のピークが観測され,それぞれ,SA末端メチル基の C-H 対称伸縮振動,フェルミ共鳴,C-H 非対称伸縮振動 に帰属できる。また, ssp 偏光では C-H 非対称振動が小 さい肩のように観測され, sps 偏光では C-H 非対称振動 のピークのみ観測されている。いずれの偏光状態でもメ チレン基に由来する振動はごく弱くしか観測されていな い。ところで,一般に言われているように,SA分子が all-trans で配列し, 親水基 親水基, 疎水基 疎水基のペ アで交互に積層すると仮定すると,局所対称性により, LB 多層膜の奇数層膜では,その最外層にある SA 末端 のメチル基のみ観測され,また偶数層膜では SFG 信号 が観測されないはずである。奇数層膜の場合ではFig.3 は確かに予想されるとおりである。しかしながら,興味 深いことに偶数層膜は奇数層膜とほぼ同様なスペクトル を与える。すなわち,空気中では両者の最外層の分子構

造が類似していることが示唆される。偶数層 SA の LB 膜を水中から引き上げる際に,その最外層の分子構造が 変化していることが示唆される^{19,21})。

表面分子構造をより詳細に調べるために,通常の SA (H)と重水素置換SA(D)を用いた。DとHで作製し たLB薄膜では層間における反転対称性が無くなるた め,LB 膜内の局所対称性を制御でき,LB 膜の表面層 の分子構造を詳細に解析できるはずである。Fig.4には, 金基板上で作製した(a)H;(b)DDD;(c)DDDH;(d) DDDHH の LB 薄膜の ppp-SFG スペクトルを示す。本実 験条件下では金基板から発生する非共鳴信号が共鳴信号 との間に位相差が存在するため,LB 膜に由来する分子 振動の信号は下向きのピークとして観測される^{22,23)}。奇 数層膜の(a)Hと(b)DDDはC-H領域(2800~3000 cm⁻¹) と C-D 領域 (2000~2250 cm⁻¹) にそれぞれ三本の末端 メチルに由来するピークが観測される。一方, DDDの 上にさらに一層の H を累積すると(DDDH, Fig. 4(c)), C-H 領域に観測された SFG スペクトルは, 一層だけの Hのもの(Fig.4(a))と比べるとずっと弱く,奇数層 膜 DDDHH の SFG スペクトル (Fig. 4 (d)) と類似する ことがわかる。Fig.4の挿入図に示すように,偶数層の DDDH 膜の最外層での分子構造はすでにHではなく, DDDHH 膜の最外層にある HH のように変化したと仮定

ᆎ

深・大澤雅俊

Fig. 4 SFG spectra of LB films of (a) normal stearic acid (H) monolayer, (b) 3-layer deuterated stearic acid-d35 (DDD), and (c) DDDH, and (d) DDDHH. The polarization combination is *ppp*. The inset shows a schematic model of the structural change at the outmost layer. The LB films were deposited from 0.3 mM NaHCO₃ (pH = 6.8) containing 0.2 mM CdCl₂.

すれば,測定結果がよく理解できる。

これを確認するために,AFMを用いてマイカ表面に おける SA 分子のLB 薄膜の表面形状を空気中で観察し た(Fig.5)⁹⁾。1と3層のLB 膜が広い範囲(10×10 µm²) にわたり,平坦な表面構造を示すのに対して,2層膜の 表面では,多くのアイランド構造が観察される。各アイ ランドの表面は平坦であり,断面図からアイランドの高 さは約5 nmで,SA の二分子の高さに相当する。すな わち,偶数層LB 薄膜の最外層が再配向し,bilayerの構 造を形成したことを示す¹⁹)。

このような最外層における SA 分子の再配列が, なぜ 起こるのか, 膜作製中に水中で起こるのか, それとも空 気中に引き上げる際に起こるのかなどの点を明らかにす るために,偶数層 LB 膜の界面分子構造とその安定性に ついて水中のその場 SFG 分光測定により調べた²¹)。Fig. 6には,0.2 mM の Cd²⁺イオンを含む緩衝溶液中(pH= 6.8)で得られた SA の二分子膜のその場 ssp-SFG スペ クトルを示す。ここでも二分子膜の各層からの SFG 信 号を分離測定するため, DH の二分子膜を用いた。二分

子膜が作製された直後の SFG スペクトル (Fig. 6 (a)) は単分子膜 SA のもの (Fig. 3 (b)) とほぼ同じであり, 理想的な二分子膜の形成が示唆される。しかしながら、 浸漬時間とともに末端メチルの SFG ピーク強度が徐々 に弱くなり,5時間浸漬後,最初の強度の約1/3となる (Fig.6(b)~(e))。このことから,理想的な二分子膜で は,水中においても最初の分子構造を維持できず,時間 とともに構造が変化することがわかった²¹⁾。一方, Fig. 7は,同じD/H二分子膜を,Cd²⁺を含まない緩衝溶液 中(pH=6.8)で観測した SFG スペクトルを示す。この 場合,界面の水分子のOH伸縮振動からC-H伸縮振動 への影響が若干大きくなるものの,浸漬とともに SA末 端のメチルの SFG 信号強度がほとんど変化せず一定で ある。Cd2+の存在が, SA 二分子膜の最外層の分子構造 に大きな影響を及ぼしていることがわかる。以上の結果 をもとに,末端 COO⁻基と Cd²⁺イオンの強い静電的キ レート結合により, Fig.8に示すように, 最外層の再配 列が起こるというモデルを提案した21)。表面分子の一部 が反転することにより,局所対称性が生まれ,LB 膜最

Fig. 5 AFM images (10 μm × 10 μm, z scale: 6 nm) for (a) 1-, (b) 2- and (c) 3-layered LB films of stearic acid on the mica surface. (d) is an enlarged AFM image (4 μm × 4 μm, z scale: 6 nm) of (b). (e) is a sectional profile in (d).

外層の SA 分子の末端メチルからの信号が弱くなること がわかる。また,偶数層の SA の LB 薄膜を水溶液から 引き上げると,このような表面分子構造変化は一気に加 速される。この際,COO⁻基と Cd²⁺の強い静電的引力の ほかに 疎水的なアルキル鎖が空気側へ向くことにより, 再配向構造が一層安定化されるためだと考えられる。一 方,Cd²⁺が下層水溶液に存在しない場合,SA が安定な bilayer 構造を維持できることが本研究から初めてわかっ た。

さらに,従来の赤外やラマン分光では,LB 膜の平均 的な構造しか測定できないのに対して,上記のLB 薄膜 の SFG スペクトル(Fig. 3)から,LB 膜最外層の分子 構造を求めることができる。具体的には,ssp と sps 偏 光 SFG スペクトルから得られた末端メチルの C-H 非対 称伸縮振動モードのピーク強度から,LB 薄膜の最外層 の分子配向を求めることができる^{24,25})。詳細は省くが, 基板表面の第一層の SA 薄膜が表面法線から若干傾いて いる(~17°)のに対して,それ以降の層は傾き角が小 さくなり(~7°),SA 分子がより表面に垂直するよう になったことがわかった²¹)。この結果は従来の赤外全反 射測定²⁶とX 線反射率測定²⁷)と異なっているが,これら の報告には,水層溶液に二価金属イオンが含まれておら ず,上記に議論されたように,LB 膜の層間の相互作用 はそれによって弱くなるので,膜構造にも影響を及ぼし たものと考えている。

また,我々は擬似生体膜のモデルの一つであるリン脂 質分子のホスファチジルコリン(DPPC)の二分子膜構 造やコレステロールによる安定化効果についても SFG 分光法により検討した。二価カチオンに誘起される界面 分子構造の変化はリン脂質分子二分子膜に観測されてお らず,Cd²⁺誘起界面分子構造変化はSAのような飽和脂 肪酸分子に特有な現象であることを示唆した²¹)。

このほかに,生体高分子膜のポリ-2-メトキシエチル アクリレート(PMEA)の界面分子構造や環境ホルモン分 子との相互作用について,SFG,赤外反射分光法(IRRAS) および水晶振動子マイクロバランス法(QCM)により 調べ,興味深い結果が得られている^{20,28})。

4.結 論

本研究は, SFG の高い界面感度を利用し,従来の振動分光法では観測が困難とされる LB 超薄膜の表面分子構造について調べた。Cd²⁺イオンの存在により,偶数層 LB 薄膜の表面分子構造に重大な影響を及ぼしていることを示した。この研究は将来,蛋白質や糖質などの機

Fig. 6 In situ SFG spectra of LB films on a fused quartz surface of DH bilayer in 0.3 mM NaHCO₃ (pH = 6.8) with 0.2 mM Cd²⁺ cation for different immersion periods. The polarization combination is *ssp*.

Fig. 7 In situ SFG spectra of LB films on a fused quartz surface of DH bilayer in 0.3 mM NaHCO₃ (pH = 6.8) without Cd²⁺ cation for different immersion periods. The polarization combination is *ssp*.

Fig. 8 Proposed model for the interfacial structural change at the outmost-layer of evennumbered LB films of stearic acid in the subphase containing Cd²⁺.

能性分子と生体膜の作用機構と機能性発現の理解に,さらに道を開くものと考える。また,強力な界面研究手段となるブロードバンド SFG分光法は環境化学の界面計 測のみならず,表面化学,表面物理や生物学などの広い 研究分野に役に立つものと考えている。

謝辞 辞

本研究は,科学技術振興機構(JST)さきがけ研究「変

換と制御」領域の支援のもと,北大理学研究科化学専攻 の魚崎浩平教授と北大電子研の田中 賢先生からの多く の助言と協力に感謝致します。本研究はグループメンバ ーの野田浩之と森田成昭,および大学院生の西田拓磨,

李 桂峰,東 基,周 尉各氏との共同で行ったもので ある。

文 献

- 1) D.K. Schwartz: Surf. Sci. Rep. 27, 245 (1997).
- J.B. Peng, G.T. Barnes and I.R. Gentle: Advances in Colloid and Interface Sci. 91, 163 (2001).
- D.K. Schwartz, R. Viswanathan and J.A.N. Zasadzinski: J. Phys. Chem. 96, 10444 (1992).
- D.K. Schwartz, J. Garnaes, R. Viswanathan and J.A.N. Zasadzinski: Science 257, 508 (1992).
- D.Y. Takamoto, E. Aydil, J.A. Zasadzinski, A.T. Ivanova, D.K. Schwartz, T. Yang and P.S. Cremer: Science 293, 1292 (2001).
- Y.R. Shen: "The Principles of Nonlinear Optics" (John Wiley & Sons, Inc., New York, 1984).
- 7) Y.R. Shen: Proc. Natl. Acad. Sci. USA 93, 12104 (1996).
- 8) C.D. Bain: J. Chem. Soc. Faraday Trans. 91, 1281 (1995).
- 9) G.L. Richmond: Chem. Rev. 102, 2693 (2002).
- M. Buck and M. Himmelhaus: J. Vac. Sci. Technol. A 19, 2717 (2001).
- 11) 和田昭英, 堂免一成, 廣瀬千秋: 分光研究 47, 190 (1998).
- 12) 叶 深,魚崎浩平: "SFG 計測",ナノテクノロジ ーハンドブック,II 編「観る」3章「短パルスナノ 光で観る」(オーム社,2003) p. 69.

- 13) S. Ye, T. Saito, S. Nihonyanagi, K. Uosaki, P.B. Miranda, D. Kim and Y.R. Shen: Surf. Sci. 476, 121 (2001).
- 14) S. Ye, S. Nihonyanagi and K. Uosaki: Phys. Chem. Chem. Phys. (PCCP) 3, 3463 (2001).
- 15) E.W.M. van der Ham, Q.H.F. Vrehen and E.R. Eliel: Optics Lett. 21, 1448 (1996).
- L.J. Richter, T.P. Petralli-Mallow and J.C. Stephenson: Optics Lett. 23, 1594 (1998).
- 17) M. Bonn, C. Hess, S. Funk, J.H. Miners, B.N.J. Persson, M. Wolf and G. Ertl: Phy. Rev. Lett. 84, 4653 (2000).
- 18) T. Ishibashi and H. Onishi: Appl. Spectrosc. 56, 1298 (2002).
- 19) S. Ye, H. Noda, S. Morita, K. Uosaki and M. Osawa: Langmuir 19, 2238 (2003).
- 20) S. Ye, S. Morita, G. Li, H. Noda, K. Tanaka, K. Uosaki and M. Osawa: Macromolecules 36, 5694 (2003).
- 21) S. Ye, H. Noda, T. Nishida, S. Morita and M. Osawa: Langmuir, in press (2003).
- 22) C.D. Bain, P.B. Davies, T.H. Ong, R.N. Ward and M.A. Brown: Langmuir 7, 1563 (1991).
- 23) S. Ye, S. Nihonyanagi and K. Uosaki: Nonlinear Optics 24, 93 (2000).
- 24) N. Watanabe, H. Yamamoto, A. Wada, K. Domen and C. Hirose: Spectrochim. Acta 50 A, 1529 (1994).
- 25) C. Hirose, N. Akamatsu and K. Domen: Appl. Spectrosc. 46, 1051 (1992).
- 26) F. Kimura, J. Umemura and T. Takenaka: Langmuir 2, 96 (1986).
- 27) A. Asmussen and H. Riegler: J. Chem. Phys. 104, 8151 (1996).
- 28) G. Li, S. Morita, S. Ye, M. Tanaka, M. Osawa: Anal Chem., accepted.