[Table II] Contact Information

* Please input ".hokudai.ac.jp"after "@cat", when you send an E-mail. Please put "81-11-706-" in front of the phone number.

Research Division	Abstract	Contacts
	Our missions are to develop unique surface analysis techniques, to observe the catalytically active solid surfaces on an atomic level, to reveal the reaction mechanisms, to make the catalytically interesting surfaces and to manipulate the surface reactions. We applied the accelerator based beam techniques to the characterization of the surfaces such as synchrotron radiation, positron, muon and X-ray free electron laser. Fig.1 shows the ultra high sensitive XAFS technique to study the Pt on the flat graphite surface in the fuel cell system. We can observe the XAFS of sub monolayer Pt. Also we have successfully observed a new phenomenon called as MARX-RAMAN (Multi Atom Resonance X-ray Raman) sensitive to the local structure of the atom accompanying the specific bond. Intermetallics draw much attention as a new class of catalysts. We are investigating Ni ₂ P, a typical intermetallic catalyst. We have found a P easy diffusion path where beautiful tetrahedral intermediate structure is realized as shown in Fig.2.	 Prof.: Kiyotaka ASAKURA e-mail: askr Phone: 9113 Assoc. Prof.: Satoru TAKAKUSAGI e-mail: takakusa Phone: 9114 Assist. Prof:: Hiroko MIWA e-mail: ariga Phone: 9115
Catalyst Surface	<figure><figure></figure></figure>	

Research Division	Abstract	Contacts
Catalysis Theory	To understand complex mechanisms in catalytic processes, we are developing accurate theories for describing electronic structures in complex molecular systems, the QM/MM methods for large molecular systems, the first principles molecular dynamics simulations for reaction dynamics, and analytical methods based on quantum and statistical mechanics. These methods are applied to various catalytic reactions involving organic, transition-metal, and heterogeneous catalysts. Our current research focuses on the following topics: 1. Mechanism of hydrolysis by model carbon catalysts. 2. Mechanism of ethylene oxidation with Pt/mesoporous SiO ₂ catalyst. 3. Organic catalytic reactions on the metal-oxide surface. 4. Computer-aided catalyst design for methane activation. 5. Mechanism of the Pt-catalyzed the reduction of the amide with bifunctional hydrosilane. 6. Reaction mechanism on metal clusters. Fig. 1 Complete oxidation of ethylene on the Pt _v /silica Fig. 1 Complete oxidation of ethylene on the Pt _v /silica	Prof.: Jun-ya HASEGAWA e-mail: hasegawa Phone: 9145 Assist. Prof:: Min GAO e-mail: gaomin Phone: 9145

Research Division	Abstract	Contacts
Catalytic Transformation	Our strategy is molecular design of heterogeneous catalysts and their application for utilization of renewable energies and environmental protection. One of our topics is conversion of non-food biomass to valuable chemicals by heterogeneous catalysts. We have found that air oxidation of woody biomass provides a weakly acidic carbon that can hydrolyze the woody biomass to glucose and xylose. The solid residue containing the carbon catalyst and lignin after reaction is converted back to a fresh catalyst by the same air oxidation. The carbon catalyst can be utilized in a plug flow slurry reactor for hydrolysis of cellulose to soluble β -1,4 glucans that are further hydrolyzed to glucose in a fixed bed reactor over a conventional solid acid catalyst (Fig. 1). This process is the first example for continuous conversion of cellulose to soluble products in a slurry system. Our interest also includes catalytic application of mesoporous materials. We reported high activity of Pt/mesoporous silica in low temperature oxidation of ethylene to CO2 (Fig. 2). This catalyst is practically used in the latest models of refrigerators to inhibit aging of vegetables and fruits. We are currently studying the structure-activity relationship in this reaction and also further application for the removal of odorous organic compounds with the Pt catalyst.	 Prof.: Atsushi FUKUOKA e-mail: fukuoka Phone: 9140 Assoc. Prof.: Kiyotaka NAKAJIMA e-mail: nakajima Phone: 9136 Assist. Prof:: Hirokazu KOBAYASHI e-mail: kobayashi.hi Phone: 9137 Assist. Prof:: Abhijit SHROTRI e-mail: ashrotri Phone: 9137

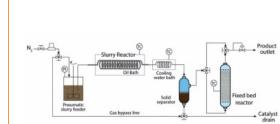


Fig. 1 Continuous flow slurry process for hydrolysis of mix-milled cellulose and *Eucalyptus*.

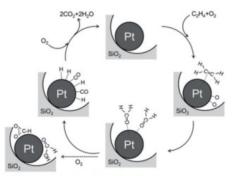
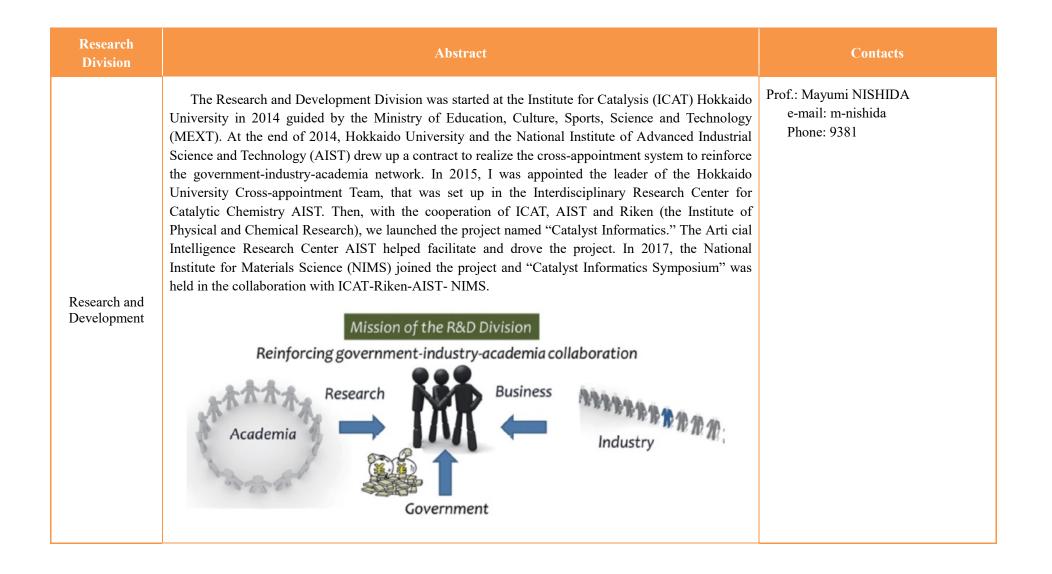



Fig. 2 Proposed mechanism for low-temperature oxidation of ethylene over Pt/mesoporous silica.

Research Division	Abstract	Contacts
Catalyst Material	Our aim is to design new heterogeneous catalysts for green organic reactions and automotive pollution control with minimum use of precious metal resources. Mechanistic and structural studies by various in situ spectroscopic methods establish the structure-activity relationship, which provides fundamental aspects for catalyst design. We have found that creation of multifunctional active sites at metal-metal or metal-support interfaces is a key factor for design of novel catalysts. Interplay of experiments, computational chemistry and data science is our new methodology to develop heterogeneous catalysts for energy and environmental issues.	 Prof.: Ken-ichi SHIMIZU e-mail: kshimizu Phone: 9164 Assoc. Prof.: Shinya FURUKAWA e-mail: furukawa Phone: 9162 Assist. Prof:: Takashi TOYAO e-mail: toyao Phone: 9165

Research Division	Abstract	Contacts
Photocatalysis	We are aiming to design, fabricate and characterize photocatalyst particles and to clarify the mechanism of their photocatalysis. (1) reversed double-beam photoacoustic spectroscopy (RDB-PAS) for evaluation of energy-resolved density of electron traps in photocatalyst particles to be compared with their photocatalytic activity; (2) examination of light-intensity dependence of photocatalytic reactions using an ultrahigh-intensity continuous monochromatic light source to find electron-transfer mechanism depending on the density of electrons or holes in a particle; (3) preparation of highly active (1) development of metal oxide particles with micro-macro hierarchical structure (Fig. 2) through hydrothermal reaction, and clarification of the mechanism of those particle formation and photocatalysis on them.	 Prof.: Bunsho OHTANI e-mail: ohtani Phone: 9132 Assoc. Prof.: Ewa KOWALSKA e-mail: kowalska Phone: 9130 Assist. Prof:: Mai TAKASHIMA e-mail: takashima.m Phone: 9130

Research Division	Abstract	Contacts
Macromolecular Science	Our research activities focus on the synthesis of polymers having controlled structures including helices, π -stacked conformations, and hyperbranches and supramolecules including ordered liquid crystalline phases aiming at creating advanced materials showing catalytic activities, photo emission, photo-electronic functions, non-linear optical properties, separation functions, and pharmaceutical activities. We have succeeded in the synthesis and structural elucidation of π -stacked vinyl polymer, poly(dibenzofulvene), for the first time (Fig. 1). Based on the π -stacked structure, this polymer shows valuable photo electronic properties that have been thought to be unique to main-chain conjugated polymers. Another goal is to create a polymer helix using light: we have, for the first time, prepared a preferred-handed helix on the basis of chirality of light (circularly polarized light) in a reversible manner and further extended this work to a helical-sense switching driven/triggered by light (Fig. 2).	 Prof.: Tamaki NAKANO e-mail: tamaki.nakano Phone: 9155 Assoc. Prof.: Zhiyi SONG e-mail: songzhiyi Phone: 9153

Department of Target Research

Central Research Section

Research Cluster	Abstract	Contacts
Sustainable Catalyst	This cluster is aiming at promoting advanced catalysis research. Our projects are to develop and maintain both hard and soft infrastructures in the institute, to promote and enhance the collaborations and cooperation in the community of catalysis science and engineering, and to develop the forefront of the interdisciplinary area related to catalysis. (1) Sustainable catalysis research project is to promote and support advanced catalysis researches as well as to introduce transcendental approaches in catalysis. (2) Training and education program is to contribute in developing human resources and in outreach activities to the society. (3) Database project is to accumulate experimental and XAFS information of catalytic systems and to develop catalysis informatics.	Cluster Leader: Jun-ya HASEGAWA e-mail: hasegawa Phone: 9145

Extensive Research Section

Research Cluster	Abstract	Contacts
Well-defined Surface Nanostructures	The objective of our research group is to create well-defined active nanostructures by modifying oxide single crystal surfaces with various functional molecules and metals. The origin of the catalytic activity is elucidated by using advanced surface science techniques such as STM and PTRF-XAFS. Machine-learning technique is also applied to predict nanostructures with higher activity. We are now focusing on metal clusters on oxide surfaces because they are technologically important as oxide-supported metal catalysts and electronic devices. It is not easy to prepare homogeneous subnanometersized clusters on oxides because they are easily aggregated to form large clusters. We succeeded in preparing an atomically dispersed metal species by premodifying an oxide surface with functional molecules before metal deposition (Fig. 1), which may enable precise size control of subnanometer-sized clusters with unique catalytic properties.	Cluster Leader: Satoru TAKAKUSAGI e-mail takakusa phone: 9114

Research Cluster	Abstract	Contacts
Plasmonic Photocatalysis	<text></text>	Cluster Leader: Ewa KOWALSKA e-mail: kowalska phone: 9130

Research Cluster	Abstract	Contacts
Acid-Base Catalysis	Chemical production from renewable and easily accessible carbohydrates in nature is increasingly important in recent years for the development of sustainable society. Plant-derived carbohydrates, which show higher reactivity than fossil fuel-derived hydrocarbons, can be converted to attractive platform molecules (furans, organic acids, ketones, aldehydes, olefin, etc.) by acid-base catalysis in the presence of water. In this project, acid and base functionality of electron-deficient metal species and electron-rich lattice oxygen sites, respectively, on metal oxides has been studied for the carbohydrates conversion in the presence of water. Precise control of basicity for oxide catalysts would enable selective production of various small (C2-C4) and large (> C12) hydrocarbons though fragmentation and condensation reactions. The resulting molecules can be used as sustainable resources for the production of a variety of industrially important chemicals.	Cluster Leader: Kiyotaka NAKAJIMA e-mail: nakajima phone: 9136

Research Cluster	Abstract	Contacts
Functional Alloy Catalysts	 Alloys have been recognized as effective catalyst materials. However, the general methodology and theory for catalyst design remain under debate and construction. To develop efficient alloy catalysts and establish the corresponding chemistry, it is important to understand the surface structures and electronic states of the alloys in an atomic level. For this purpose, we study the following themes from the viewpoints of catalytic chemistry, metallurgy, surface science, and theoretical chemistry: (1) Achieving stereo and regioselective molecular transformations using specific atomic arrangementsof ordered alloys. (2) Development of surface-modified intermetallies for efficient molecular conversion. (3) Synthesis and application of "intermetallic-sloid solution hybrid alloys" for well-controllable catalyst design. Fig. 1. Hydrogen-mediated stereoselective atomic atrangement of RhSb ordered alloys. Fig. 1. Hydrogen-mediated stereoselective atomic atrangement of RhSb ordered alloys. Fig. 2. Regio- and chemoselective hydrogenation of molecular states atomic atrangement of RhSb ordered alloys. 	Cluster Leader: Shinya FURUKAWA e-mail: furukawa phone: 9162

Research Cluster	Abstract	Contacts
Transition- metals-induced Synthesis and Transformation of Polymer	Carbon-carbon bond formation/cleavage on transition metals has been almost exclusively investigated due to the numerous contributions to organic synthesis. In this cluster, carbon-carbon bond formation/cleavage on transition metals were applied to develop new synthetic methodologies for polymers or oligomers. Processes for producing co-oligomers with high regioregularity are important objects in many researches. Herein, metallacycle-including polymer or oligomer were synthesized. Through the carbon-carbon bond formation/cleavage on transition metals, the metallacycle moiety was converted to a variety of aromatic rings. Subsequently, a variety of highly regioregular co-oligomers were synthesized from the same metallacycle-including oligomer.	Cluster Leader: Zhiyi SONG e-mail: songzhiyi phone: 9153