北海道大学 触媒科学研究所
Institute for Catalysis, Hokkaido University

触媒理論研究部門
Catalysis Theory Research Division

2024   2023   2022   2021  2020   2019   2018   2017   2016   2015   2014    2013 

Review Articles

2024
  1. Materials Genes of CO2 Hydrogenation on Supported Cobalt Catalysts: an AI Approach Integrating Theoretical and Experimental Data
    R. Miyazaki,* K. S. Belthle, H. Tüysüz, L. Foppa,* M. Scheffler
    J. Am. Chem. Soc.,​ 146, 5433–5444 (2024).
    DOI: 10.1021/jacs.3c12984
    Acknowledgements: BiGmax, FUNCAT
  2. Mitigating the Poisoning Effect of Formate during CO2 Hydrogenation to Methanol over Co-Containing Dual-Atom Oxide Catalysts
    N. H. M. Dostagir, C. R. Tomuschat, K. Oshiro, M. Gao, J. Hasegawa, A. Fukuoka,* and A Shrotri* 
    JACS Au, 4, 1048-1058 (2024). 
    DOI: 10.1021/jacsau.3c00789 
    Acknowledgement: KAKENHI (20H02685, 20K05217, 23K17898), Photoexcitonix, IRCCS, JURCC, RCCS (22-IMS-C002), ACCMS, Ambitious Doctoral Fellowship
  3. Intrinsic Visible Plasmonic Properties of Colloidal PtIn2 Intermetallic Nanoparticles  [Selected as Back Cover] 
    H. Takekuma, R. Sato,* K. Iida, T. Kawawaki, M. Haruta, H. Kurata, K. Nobusada, and T. Teranishi*
    Adv. Sci., 11, 2307055 (2024).
    DOI: 10.1002/advs.202307055
    Acknowledgement: IRCCS, ICR(2021-57), Cooperative Research Program of ICAT (21B1026), HPCI(hp210156), RCCS, SCS, ICR
  4. A Multi-Configurational Wave Function Theoretical Study on Electronic Structure and Magnetic Susceptibility of Dilanthanide Single Molecule Magnet
    Y. Chen, R. Miyazaki, S. Sakaki, J. Hasegawa*
    J. Phys. Chem. A, 128, 81-88 (2024).
    Virtual special issue “Roland Lindh Festschrift”
    DOI: 10.1021/acs.jpca.3c05865
    Acknowledgement: KAKENHI (20H02685, 23K17898), Photoexcitonix, Junior Scientist Promotion in Hokkaido University, JURCC, IRCCS, RCCS (23-IMS-C002)
2023
  1. Dimethyl carbonate synthesis from CO2 and methanol over CeO2: elucidating the surface intermediates and oxygen vacancy-assisted reaction mechanism
    D. Stoian, T. Sugiyama, A. Bansode, F. Medina, W. van Beek, J. Hasegawa, A. Nakayama,* A. Urakawa*
    Chem. Sci., ​14, 13908 - 13914 (2023).
    DOI: 10.1039/D3SC04466A
    Acknowledgement: -
  2. Theoretical investigation of the alkali metal poisoning tolerance mechanism of CeO2 containing Fe and H2SO4 additives 
    K. Oshiro, M. Gao,* L. Han, D. Zhang, J. Hasegawa*
    J. Phys. Chem. C, ​127, 18914–18925 (2023).
    DOI: 10.1021/acs.jpcc.3c03644
    Acknowledgement: KAKENHI(20H02685, 20K05217), Cooperative Research Program ofICAT (Proposal: 18B1015) ,  Photoexcitonix, IRCCS, RCCS(22-IMS-C002) , Ambitious Doctoral Fellowship
  3. Crystal-in-amorphous Vanadate Catalysts for Universal Poison-Resistant Elimination of Nitric Oxide
    J. Deng, S. Cai, M. Gao, J. Hasegawa, H. Yao, Y. Shen, Z. Si, J. Song, D. Zhang*
    ACS Catal., 13, 12363-12373 (2023).
    DOI: 10.1021/acscatal.3c02571
    Acknowledgement: -
  4. Variations in Photoexcitation Mechanism of an Adsorbed Molecule on a Gold Nanocluster Governed by Interfacial Contact
    Kenji Iida,* Takashi Takeuchi, Ryota Katsumi, Takashi Yatsui
    J. Phys. Chem. A, ​127, 7718–7726 (2023).
    DOI: 10.1021/acs.jpca.3c03775
    Acknowledgement: KAKENHI(19K15513), IRCCS(2022-61, 2023-70), Photoexcitonix, HPCI(hp210156,hp220135,hp230155), RCCS(23-IMS-C002), SCS, ICR, ACCMS
  5. Dynamic Behavior of Intermediate Adsorbates to Control Activity and Product Selectivity in Heterogeneous Catalysis: Methanol Decomposition on Pt/TiO2(110) [Selected as Back Cover] 
    Can Liu, Bang Lu, Hiroko Ariga-Miwa, Shohei Ogura, Takahiro Ozawa, Katsuyuki Fukutani, Min Gao, Jun-ya Hasegawa, Ken-ichi Shimizu, Kiyotaka Asakura, and Satoru Takakusagi*
    J. Am. Chem. Soc., 145, 19953-19960, (2023).
    DOI: 10.1021/jacs.3c06405
    Acknowledgement: IRCCS, Photoexcitonix, JURCC, RCCS  
  6. DFT insight into metals and ligands substitution effects on reactivity of phenoxy-imine catalysts for ethylene polymerization
    Pavee Apilardmongkol, Manussada Ratanasak,* Jun-ya Hasegawa,* Vudhichai Parasuk*
    J. Mol. Graph. Model., 125, 108586 (2023).
    DOI: 10.1016/j.jmgm.2023.108586
    Acknowledgement: IRCCS, Photoexcitonix, JURCC  
  7. Highly Enantioselective Radical Cation [2+2] and [4+2] Cycloadditions by Chiral Iron(III) Photoredox Catalysis
    Shuhei Ohmura, Kei Katagiri, Haruna Kato, Takehiro Horibe, Sho Miyakawa, Jun-ya Hasegawa, Kazuaki Ishihara* 
    J. Am. Chem. Soc., 145, 15054-15060 (2023).
    DOI: 10.1021/jacs.3c04010
    Acknowledgement: JURCC, RCCS 
  8. Paddle-Wheel Dirhodium Complexes Bearing Bulky Carboxylate Ligands: Synthesis and Catalysis in Carbene Insertion Reactions  [Selected as Front Cover] 
    Kotaro Yamashita, Kota Sato, Yutaka Tanji, Jun-ya Hasegawa, and Tetsuaki Fujihara*
    Chem Asian J., 18, e202300223 (2023). 
    DOI: 10.1002/asia.20230022
    Acknowledgement: Cooperative Research Program of ICAT (Proposal 21B1009), JURCC (Proposal 22DS0098).
  9. Optimization of General Molecular Properties in the Equilibrium Geometry Using Quantum Alchemy: An Inverse Molecular Design Approach
    Takafumi Shiraogawa,* Jun-ya Hasegawa
    J. Phys. Chem. A, 127, 4345-4353 (2023).
    DOI: 10.1021/acs.jpca.3c00205
    Acknowledgement: KAKENHI(JP21J00210, JP20H02685), Photoexcitonix, IRCCS, RCCS
  10. Pt17 Nanocluster Electrocatalysts: Preparation and Origin of High Oxygen Reduction Reaction Activity
    [Selected as Front Cover]  
    T. Kawawaki, Y. Mitomi, N. Nishi, R. Kurosaki, K. Oiwa, T. Tanaka, H. Hirase, S. Miyajima, Y. Niihori, D. J. Osborn, T. Koitaya, G. F Metha, T. Yokoyama, K. Iida*, Y. Negishi*
    Nanoscale, 15, 7272-7279 (2023).
    DOI: 10.1039/D3NR01152F
  11. First-Principles Study on Unidirectional Proton Transfer on Anatase TiO2 (101) Surface Induced by External Electric Fields
    Takahiro Chiba, Kenji Iida*, Shinya Furukawa, and Jun-ya Hasegawa
    Phys. Chem. Chem. Phys. 25, 9454-9460 (2023). 
    DOI: 10.1039/D3CP00577A
    Acknowledgement:  KAKENHI(19K15513, JP20H02685), IRCCS, Photoexcitonix, HPCI(hp220135),  RCCS(22-IMS-C002), SCS, ICR(Grant No. 2022-61), ACCMS
  12. Bulky magnesium(II) and sodium(I) bisphenoxide catalysts for chemoselective transesterification of methyl (meth)acrylates
    Xue Zhao, Manussada Ratanasak, Kazumasa Kon, Jun-ya Hasegawa*, and Kazuaki Ishihara*
    Chem. Sci. ​14, 566-572 (2023).
    DOI: 10.1039/D2SC05413B
    Acknowledgement: KAKENHI (JP20H02685), Photoexcitonix, IRCCS, RCCS(Project: 22-IMS-C002), JURCC
2022
  1. Substrate-Assisted Reductive Elimination Determining the Catalytic Cycle: Theoretical Study on the Ni-Catalyzed 2,3-Disubstituted Benzofurans Synthesis via C–O Bond Activation [Selected as Supplementary Cover ]
    Miyazaki, Ray; Iida, Kenji; Ohno, Shohei; Matsuzaki, Tsuyoshi; Suzuki, Takeyuki; Arisawa, Mitsuhiro; Hasegawa, Jun-ya*
    Organometallics, 41(23), 3455-3794 (2022). 
    DOI: 10.1021/acs.organomet.2c00419
    Acknowledgement: Photoextonix, IRCCS, BiGmax, KAKENHI(JP15H05805, JP20H02685), Cooperative Research Program of ICAT(19B1019, 20A1006,21B1028), RCCS(22-IMS-C002)

  2. Unravelling the anomalous coking-resistance over boron nitride supported Ni catalysts for dry reforming of methane
    Deng, Jiang; Gao, Min; Hasegawa, Jun-ya; Zhang, Xiaoyu; Wang, Aiyong; Chen, Aling; Zhang, Dengsong
    CCS Chemistry, 1-14 (2022).
    DOI: 10.31635/ccschem.022.202202342
  3. Iron/Photosensitizer Hybrid System Enables the Synthesis of Polyaryl-Substituted Azafluoranthenes
    Yoshimi Kato, Tatsuhiko Yoshino, Min Gao, Jun-ya Hasegawa, Masahiro Kojima*, and Shigeki Matsunaga*
    J. Am. Chem. Soc.  ​​144, 18450–18458 (2022).

    DOI: 10.1021/jacs.2c06993
    Acknowledgement: Photoextonix, RCCS(22-IMS-C002), KAKENHI (JP20H02685, JP20H05217)
  4. Asymmetric Dehydrative Cyclization of Allyl Alcohol to Cyclic Ether Using Chiral Brønsted Acid/CpRu(II) Hybrid Catalysts: DFT Study of the Origin of Enantioselectivity [Selected as Supplementary Cover]
    Manussada Ratanasak, Shinji Tanaka, Masato Kitamura,* Jun-ya Hasegawa*
    J. Org. Chem. 87, ​13062–13072 (2022).
    Acknowledgement: KAKENHI(JP15H05805, JP16H01014, JP18H04250,JP20H02685), 共同利用・共同研究,Photo-excitonix, IRCCS,
    DOI: 10.1021/acs.joc.2c01576
    RCCS(Project:22-IMS-C002).

  5. Mechanism of BPh3-Catalyzed N-Methylation of Amines with CO2 and Phenylsilane: Cooperative Activation of Hydrosilane [Selected as Inside Front Cover] [Selected as a hot paper]
    Manussada Ratanasak,Takumi Murata,Taishin Adachi,Jun-ya Hasegawa,* and Tadashi Ema*
    Chem. Eur. J. ​e202202210 (2022). 
    DOI: 10.1002/chem.202202210
    Acknowledgements: KAKENHI(20H02780), 共同利用・共同研究(19A1003), Photoexcitonix、IRCCS
  6. Exploration of Chemical Space for Designing Functional Molecules Accounting for Geometric Stability [Selected as Supplementary cover]
    Takafumi Shiraogawa,* Jun-ya Hasegawa
    J. Phys. Chem. Lett., 13, 8620–8627 (2022).
    DOI:  10.1021/acs.jpclett.2c02355
    Acknowledgement: KAKENHI(JP21J00210, JP20H02685), Photoexcitonix, IRCCS, RCCS
  7. Reaction Mechanism of Deoxydehydration by Ceria-Supported Monomeric Rhenium Catalysts: A Computational Study
    R, Hosaka, D. Asada, J. Cao, M. Tamura, Y. Nakagawa, K. Tomishige, J. Hasegawa, A. Nakayama
    J. Phys. Chem. C, 126, 11566-11573 (2022).
    DOI: 10.1021/acs.jpcc.2c02944
    Acknowledgement: 
    KAKENHI (18H05247, 20H02685), Photoexcitonix, RCCS, RIIT, ACCMS, CCMS, IMR
  8. Identifying substrate-dependent chemical bonding nature at molecule/metal interfaces using vibrational sum frequency generation spectroscopy and theoretical calculations
    B. Wang, M. Ito, M. Gao, H. Noguchi, K. Uosaki, and T. Taketsugu
    J. Phys. Chem. C 126, 11298-11309 (2022).
    DOI: 10.1021/acs.jpcc.2c01608
    Acknowledgement: Photoextonix, RCCS

  9. Atomic-Scale Picture of the Electric Double Layer around a Heterogeneous Solid-Liquid Interface Based on 3D-RISM-SCF Theory 
    K. Iida
    J. Phys. Chem. C ​126, 9466-9474 (2022)
    DOI: 10.1021/acs.jpcc.2c00872
    Acknowledgement:  KAKENHI(19K15513), IRCCS, Photoexcitonix, HPCI(hp210156),  RCCS, SCS, ICR, ACCMS

  10. Revisiting Activity Tuning using Lattice Strain: CO Decomposition in Terrace Ru(0001) and Stepped Ru(1015) Surfaces [Selected as Supplementary cover]
    D. De Chavez, J, Hasegawa
    J. Phys. Chem. C  126, 9324-9333 (2022)
    DOI: 10.1021/acs.jpcc.2c00902
    Acknowledgement: 
    KAKENHI(JP20H02685), IRCCS, RCCS, Photoexcitonix
  11. MD Studies of Methanol Confined in the Metal-Organic Framework MOF MIL-88B-Cl
    S. Siwaipram, P. A. Bopp, J.C. Soetens, J. Hasegawa, R. Schmid, S. Bureekaew
    J. Mol. Liq. 359, 119252 (2022)  
    DOI:  10.1016/j.molliq.2022.119252
    Acknowledgement: 
    Cooperative Research Program of Institute for Catalysis, (Proposal #20B1001)
  12. Unraveling the promotional effects of NiCo catalysts over defective boron nitride nanosheets in dry reforming of methane
    S. Kuboon, J. Deng, M. Gao, K. Faungnawakij, J. Hasegawa, X. Zhang, L. Shi, D. Zhang
    Catal. Today, 402, 283-291 (2022) 
    DOI: 10.1016/j.cattod.2022.04.031
    Acknowledgement: ​RCCS (Project: 22-IMS-C002) , JSPS KAKENHI (JP20K05217), IRCCS,  Photoexcitonix
  13. Exploring the Reaction Mechanism of Heterobimetallic Nickel-Alkali Catalysts for Ethylene Polymerization: Secondary-Metal-Ligand Cooperative Catalysis
    P. Apilardmongkol, M. Ratanasak, J. Hasegawa, V. Parasuk.
    ChemCatChem, 14, e202200028 (2022) 
    DOI:10.1002/cctc.202200028
    Acknowledgement: IRCCS, DPST

  14. Role of Hydration in Photoexcited Electron Transfer between a Gold Nanocluster and a Water Molecule
    K. Iida
    J. Phys. Chem. C 126, 7492-7499  (2022)
    DOI: 10.1021/acs.jpcc.1c10756
    Acknowledgement: KAKENHI(19K15513), ICR (2021-57), IRCCS, Photoexcitonix, HPCI(hp210156), RCCS, SCS, ICR, ACCMS

  15. Deoxygenative CO2 conversions with triphenylborane and phenylsilane in the presence of secondary amines or nitrogen-containing aromatics
    T. Murata, M. Hiyoshi, S. Maekawa, Y. Saiki, M. Ratanasak, J. Hasegawa,T. Ema
    Green Chemistry, 24,  2385-2390 (2022)
    DOI: 10.1039/D1GC04599G
    Acknowledgement: IRCCS, ​Yakumo Foundation for Environmental Science, and Cooperative Research Program of Institute for Catalysis (19A1003) 
  16. Doubly linked chiral phenanthrene oligomers for homogeneously π-extended helicenes with large effective conjugation length
    Y. Nakakuki, T. Hirose, H. Sotome, M. Gao, D. Shimizu, R. Li, J Hasegawa, H. Miyasaka, K. Matsuda
    Nat. Commun. 13, 14675 (10 pages) (2022)
    DOI: 10.1038/s41467-022-29108-8
  17. CH Bond Activation Mechanism by a Pd(II)(-O)Au(0) Structure Unique to Heterogeneous Catalysts
    D. Takei, T. Yatabe, T. Yabe, R. Miyazaki, J. Hasegawa, K. Yamaguchi
    JACS Au, 2, 394-406 (2022)
    DOI:10.1021/jacsau.1c00433
    Acknowledgement: RCCS

  18. Photoinduced Copper-Catalyzed Asymmetric Acylation of Allylic Phosphates with Acylsilanes   [Selected as back cover]
    Y. Ueda, Y. Masuda, T. Iwai, K. Imaeda, H. Takeuchi, K.i Ueno, M. Gao, J. Hasegawa*, M. Sawamura*
    J. Am. Chem. Soc. 114, 2218-2224 (2022)
    DOI:10.1021/jacs.1c11526
    Acknowledgement: RCCS,Photoexcitonix
2021
  1. OpenMechanochem: A Python module for mechanochemical simulations
     D. P. De Chavez, J. Hasegawa,
    SoftwareX, 16, 100879 (8 pages). (2021)
    DOI:10.1016/j.softx.2021.100879
    Acknowledgement: KAKENHI(20H02685), IRCCS, RCCS,Photoexcitonix
  2. A boron-transfer mechanism mediating the thermally induced revival of frustratedcarbene–borane pairs from their shelf-stableadducts
    Y. Hoshimoto, M. Sakuraba, T. Kinoshita, M. Ohbo, M. Ratanasak, J. Hasegawa, S. Ogoshi
    Comm. Chem., 4, 137 (6 pages). (2021)
    DOI:10.1038/s42004-021-00576-1
    Acknowledgement: KAKENHI(15H05805), IRCCS, RCCS, Cooperative Research Program of Institute for Catalysis, Hokkaido University
  3.  Catalytic functionalization of hexagonal boron nitride for oxidation and epoxidation reactions by molecular oxygen
    M. Gao, B. Wang, T. Tsuneda, A. Lyalin, T. Taketsugu
    J. Phys. Chem. C, 125, 19219-19228. (2021)
    DOI:10.1021/acs.jpcc.1c04661
    Acknowledgements: KAKENHI 20K05217, Photoexcitonix, RCCS
  4. Co Single Atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO
    N. Dostagir, R.Rattanawan, M. Gao, J. Hasegawa, K. Asakura, A. Fukuoka, S. Abhijit
    ACS Catal. 11, 9450-9461. (2021)
    DOI:10.1021/acscatal.1c02041
    Acknowledgements: KAKENHI 20K05217, 20H02685,IRCCS, Photoexcitonix, RCCS
  5.  Impact of tensile and compressive forces on hydrolysis of cellulose and chitin
    H. Kobayashi, Y. Suzuki, T. Sagawa, K.Kuroki, J. Hasegawa, T. Tanaka, A. Fukuoka
    Phys. Chem. Chem. 23, 15908-15916. (2021)
    DOI:doi.org/10.1039/D1CP01650D
    Acknowledgements:KAKENHI(20H02685)
  6.  Ionic Liquid-stabilized Single-atom Rh Catalyst against Leaching
    S. Ding, M. Huelsey, H. An, Q.He, H. Asakura, M. Gao, J. Hasegawa, T. Tanaka, N.Yan
    CCS Chem. 3,1814-1822. (2021)
    DOI:10.31635/ccschem.021.202101063
    Acknowledgements:IRCCS, Photoexcitonix, RCCS,KAKENHI(JP20K05217)
  7. A Triad Fluorenone Derivative Bearing Two Imidazole Groups That Switches between Three States by Base and Acid Stimuli
    Y. Wang, N. Maity, L. Zhao, M. Kramer, J. Hasegawa, Y. Shichibu, K. Konishi, X. Wang, Z. Song, M. Bando, T. Nakano
    Chem.Lett., 50, 1363–1367. (2021)
    DOI:10.1246/cl.210112
    Acknowledgements: IRCCS, Photoexcitenix, RCCS
  8.  Design and Prediction of High Potent ansa-Zirconocene Catalyst for Olefin Polymerizations: Combined DFT Calculations and QSPR Approach
    M. Ratanasak, J. Hasegawa, V. Parasuk
    New. J. Chem.,45, 8248-8257 (2021)
    DOI:10.1039/D1NJ00655J
    Acknowledgements: CU-57-038-AM, IRCCS, Photoexcitenix, RCCS
  9.  Mechanistic Study of C-H Bond Activation by O2 on Negatively Charged Au Clusters: a,ß-Dehydrogenation of 1-Methyl-4-piperidone by Supported Au Catalysts [selected as inside front cover]
    R. Miyazaki, X. Jin, D. Yoshii, T. Yatabe, T. Yabe, N. Mizuno, K.Yamaguchi, J. Hasegawa,
    Catal. Sci. Technol.,11, 3333-3346, (2021)
    DOI:10.1039/D1CY00178G
    Acknowledgements: KAKENHI(15H05805, 20H02685, and 15H05797), Photoexcitonix IRCCS, RCCS
  10.  Mechanism of the Asymmetric Dehydrative Allylative Cyclization of Alcohols to Cyclic Ethers Catalyzed by a CpRu Complex of the Chiral Picolinic Acid-Type Ligand, Cl-Naph-PyCOOH: Is a π-Allyl Intermediate Present?
    Y. Suzuki, S. Iwase, M. Ratanasak, J. Hasegawa, S. Tanaka, M. Kitamura,
    Bull. Chem. Soc. Jpn., 94, 440-450, (2021)
    DOI:10.1246/bcsj.20200228
    Acknowledgements: KAKENHI(JP15H05805)
  11.  Catalytic Activity of Gold Clusters Supported on h-BN/Au(111) Surface for Hydrogen Evolution Reactio
    M. Gao, M. Nakahara, A. Lyalin, T. Taketsugu,
    J. Phys. Chem. C, 125, 1334-1344, (2021)
    DOI:10.1021/acs.jpcc.0c08826
    Acknowledgements: Photoexcitenix, KAKENHI(JP20K05217)
  12.  Tuning Transition Electric and Magnetic Dipole Moments: [7]Helicenes Showing Intense Circularly Polarized Luminescence
    H. Kubo, T. Hirose, T. Nakashima, T. Kawai, J. Hasegawa, K. Matsuda,
    J. Phys. Chem. Lett., 12, 686-695, (2021)
    DOI:10.1021/acs.jpclett.0c03174
    Acknowledgements: IRCCS, ICAT(20B1032)
  13.  On the Electronic Structure Origin of Mechanochemically Induced Selectivity in Acid Catalyzed Chitin Hydrolysis [Selected as Supplementary Cover]
    D. P. De Chavez, H. Kobayashi, A. Fukuoka, J. Hasegawa,
    J. Phys. Chem. A, 125, 187-197, (2021)
    DOI:acs.jpca.0c09030Acknowledgements: ALCA(JPMJAL1309), KAKENHI(JP20H02685, JP18H01781), IRCCS, RCCS, ACCMS, RIIT, Photoexcitenix
  14.  Chemoselective Transesterification of Methyl (Meth)acrylates Catalyzed by Sodium(I) or Magnesium(II) Aryloxides [Press Released]
    J. Ng, H. Arima, T. Mochizuki, K. Toh, K. Matsui, M. Ratanasak, J. Hasegawa, M. Hatano, K. Ishihara,
    ACS Catal., 11, 199-207, (2021)
    DOI:10.1021/acscatal.0c04217
    Acknowledgements: KAKENHI(JP15H05805), IRCCS, RCCS

2020

  1. Increase in CO2 reduction rate via optical near-field effect
    T. Yatsui, Y. Nakamura, Y. Suzuki, T. Morimoto, Y. Kato, M. Yamamoto, T. Yoshida, W. Kurashige, N. Shimizu, Y. Negishi, K. Iida, K. Nobusada,
    J. Nanophotonics, 14, 046011, (2020)
    DOI:10.1117/1.JNP.14.046011
    Acknowledgements: None
  2. Catalytic Mechanism of Liquid-Metal Indium for Direct Dehydrogenative Conversion of Methane to Higher Hydrocarbons
    Y. Nishikawa, Y. Ohtsuka, H. Ogihara, R. Rattanawan, M. Gao, A. Nakayama, J. Hasegawa, I. Yamanaka,
    ACS Omega, 5, 28158-28167, (2020)
    DOI:10.1021/acsomega.0c03827
    Acknowledgements: CREST(JPMJCR15P4), IRCCS, Photoexcitenix, RCCS, ACCMS
  3. Mechanistic Study on Deoxydehydration and Hydrogenation of Methyl Glycosides to Dideoxy Sugars over ReOx-Pd/CeO2 catalyst
    J. Cao, M. Tamura, R. Hosaka, A. Nakayama, J. Hasegawa, Y. Nakagawa, K. Tomishige,
    ACS Catal., 10, 12040-12051, (2020)
    DOI:10.1021/acscatal.0c02309
    Acknowledgements: KAKENHI(18K18965, 18H05247), ICAT(19A1006), RCCS, RIIT, CCMS(19S0006)
  4. Extending Nudged Elastic Band Method to Reaction Pathways Involving Multiple Spin States
    L. Zhao, K. Watanabe, N. Nakatani, A. Nakayama, X. Xu, J. Hasegawa, J. Chem. Phys., 153, 134114, (2020)
    DOI:10.1063/5.0021923
    Acknowledgements: KAKENHI(JP15H05805 and 20H02685), IRCCS, CSC(201506340134), Photoexcitenix, RCCS, ACCMS, RIIT
  5. Spin‐inversion mechanisms in O2 binding to a model heme compound: A perspective from nonadiabatic wave packet calculations [Selected as Cover Image]
    K. Saito, Y. Watabe, T. Miyazaki, T. Takayanagi, J. Hasegawa,
    J. Comput. Chem., 41, 2527-2537, (2020)
    DOI:10.1002/jcc.26409
    Acknowledgements: KAKENHI(17KT0093)
  6. Self-Assembled Multilayer Iron(0) Nanoparticle Catalyst for Ligand-Free Carbon–Carbon/Carbon–Nitrogen Bond-Forming Reactions
    T. Akiyama, Y. Wada, M. Yamada, Y. Shio, T. Honma, S. Shimoda, K. Tsuruta, Y. Tamenori, H. Haneoka, T. Suzuki, K. Harada, H. Tsurugi, K. Mashima, J. Hasegawa, Y. Sato, M. Arisawa,
    Org. Lett., 22, 7244-7249, (2020)
    DOI:10.1021/acs.orglett.0c02574
    Acknowledgements: ICAT(19B1019), NJRC
  7. Zeolite-supported ultra-small nickel as catalyst for selective oxidation of methane to syngas
    S. Yasuda, R. Osuga, Y. Kunitake, K. Kato, A. Fukuoka, H. Kobayashi, M. Gao, J. Hasegawa, R. Manabe, H. Shima, S. Tsutsuminai, T. Yokoi,
    Commun. Chem., 3, 129, (2020)
    DOI:10.1038/s42004-020-00375-0
    Acknowledgements: SIP, CREST(JPMJCR15P4), KAKENHI(JP20K05217), RCCS, IRCCS
  8. Electric Field Effect on Graphene/Organic Interface under Bias Voltage
    K. Iida,
    Chem. Lett., 49, 1117-1120, (2020)
    DOI:10.1246/cl.200349
    Acknowledgements: KAKENHI(19K15513), IRCCS, Photoexcitonix, Oakforest­PACS, RCCS
  9. Delocalization Effect Promoted the Indoor Air Purification via Unlocking Directly Ring-open Pathway of Toluene
    W. Qu, P. Wang, M. Gao, J. Hasegawa, Z. Shen, Q. Wang, R. Li, D. Zhang,
    Environ. Sci. Technol., 54, 9693-9701, (2020)
    DOI:10.1021/acs.est.0c02906
    Acknowledgements: None
  10. A Systematic Study on the Absorption Features of Interstellar Ices in Presence of Impurities
    P. Gorai, M. Sil, A. Das, B. Sivaraman, S. K. Chakrabarti, S. Ioppolo, C. Puzzarini, Z. Kanuchova, A. Dawes, M. Mendolicchio, G. Mancini, V. Barone, N. Nakatani, T. Shimonishi, N. J. Mason,
    ACS Earth Space Chem., 4, 920-946, (2020)
    DOI:10.1021/acsearthspacechem.0c00098
    Acknowledgements: None
  11. Aluminum porphyrins with quaternary ammonium halides as catalysts for copolymerization of cyclohexene oxide and CO2: Metal–ligand cooperative catalysis[Selected as Back Cover]
    J. Deng, M. Ratanasak, Y. Sako, H. Tokuda, C. Maeda, J. Hasegawa, K. Nozaki, T. Ema,
    Chem. Sci., 11, 5669-5675, (2020)
    DOI:10.1039/D0SC01609H
    Acknowledgements: KAKENHI(JP15H05805), ICAT(19A1003)
  12. Quantum chemical study of substituent effects on CN bond in aryl isocyanide molecules adsorbed on the Pt surface
    B. Wang, M. Gao, K. Uosaki, T. Taketsugu,
    Phys. Chem. Chem. Phys., 22, 12200-12208, (2020)
    DOI:10.1039/D0CP00760A
    Acknowledgements: ESICB(JPMXP0112101003), Photoexcitenix, CREST(JPMJCR1902), IRCCS, RCCS, ACCMS
  13. Synthesis of silyl formates, formamides, and aldehydes via solvent-free organocatalytic hydrosilylation of CO2
    T. Murata, M. Hiyoshi, M. Ratanasak, J. Hasegawa, T. Ema,
    Chem. Commun., 56, 5783-5786, (2020)
    DOI:10.1039/D0CC01371D
    Acknowledgements: ICAT(19A1003), IRCCS, Photoexcitenix, RCCS
  14. Roles of Salicylate Donors in Enhancement of Productivity and Isotacticity of Ziegler–Natta Catalyzed Propylene Polymerization
    M. Ratanasak, J. Hasegawa, V. Parasuk,
    Polymers, 12, 883, (2020)
    DOI:10.3390/polym12040883
    Acknowledgements: IRCCS, Post-K, Photoexcitonix, RCCS, ACCMS, KAKENHI(JP15H05805)
  15. Spin‐inversion mechanisms in O2 binding to a model heme complex revisited by density function theory calculations
    K. Saito, Y. Watabe, T. Fujihara, T. Takayanagi, J. Hasegawa,
    J. Comput. Chem., 41, 1130-1138 (2020)
    DOI:10.1002/jcc.26159
    Acknowledgements: KAKENHI(17KT0093)
  16. A detailed analysis of the spin-crossover reaction of H⁠2S binding to heme and the six-coordinated FeP(Im)-HS⁠−porphyrin complex
    B.D. Ostojić, P. Schwerdtfeger, A. Nakayama, J. Hasegawa, D.S. Đorđević
    J. Inorg. Biochem., 206, 111049 (2020)}
    DOI:10.1016/j.jinorgbio.2020.111049
    Acknowledgements: Serbia(ON172001), CTCP, RCCS, RIIT, ACCMS
  17. Effect of O2adsorption on the termination of Li–O2 batteries discharge
    J. Li, M. Gao, S. Tong, C. Luo, H. Zhu, T. Taketsugu, K. Uosaki, M. Wu
    Electrochim. Acta, 340, 135977 (2020)
    DOI:10.1016/j.electacta.2020.135977
    Acknowledgements: NSFC(51672315, U1801251, 21403106), KAKENHI(17K1442907), IRCCS, Post-K, RCCS, ACCMS, Projects of Guangzhou(201704030020, 2017B090917001)
  18. Electron transfer governed by light–matter interaction at metal–semiconductor interface
    K. Iida and M. Noda,
    npj Comput Mater, 6, 5 (2020)
    DOI:10.1038/s41524-019-0269-x
    Acknowledgements: KAKENHI (19K15513), Post-K(hp180196, hp190193), K computer (hp180196, hp190193), RCCS
2019
  1. L-cysteine modified acacia gum as a multifunctional binder for lithium-sulfur batteries
    Q. Qi, Y. Deng, S. Gu, M. Gao, J. Hasegawa, G. Zhou, X. Lv, W. Lv, Q-H. Yang,
    ACS Appl. Mater. Interfaces, 11, 47956-47962 (2019)
    DOI:10.1021/acsami.9b17458
  2. Electrostatic Stabilization of Single-Atom Catalysts Using Ionic Liquids
    S. Ding, Y. Guo, M-J. Hulsey, B. Zhang, H. Asakura, L. Liu, Y. Han, M. Gao, J. Hasegawa, B. Qiao, T. Zhang, N. Yan,
    Chem, 5, 3207-3219 (2019)
    DOI:10.1016/j.chempr.2019.10.007
  3. Methyl‐Selective α‐Oxygenation of Tertiary Amines to Formamides by Employing Copper/Moderately Hindered Nitroxyl Radical (DMN‐AZADO or 1‐Me‐AZADO)
    S. Nakai, T. Yatabe, K. Suzuki, Y. Sasano, Y. Iwabuchi, J. Hasegawa, N. Mizuno, K. Yamaguchi,
    Angew. Chem. Int. Ed., 58, 16651-16659 (2019)
    DOI:10.1002/anie.201909005
  4. Ni-Catalyzed Cycloisomerization between 3-Phenoxy Acrylic Acid Derivatives and Alkynes via Intramolecular Cleavage and Formation of the C–O Bond To Give 2,3-Disubstituted Benzofurans
    S. Ohno, J. Qiu, R. Miyazaki, H. Aoyama, K. Murai, J. Hasegawa, M. Arisawa,
    Org. Lett., 21, 8400-8403 (2019)
    DOI:10.1021/acs.orglett.9b03170
  5. Theoretical Study on the C-H Activation of Methane by Liquid-Metal Indium: Catalytic Activity of Small Indium Clusters [Selected as Supplementary Cover]
    Y. Ohtsuka, Y. Nishikawa, H. Ogihara, I. Yamanaka, M. Ratanasak, A. Nakayama, J. Hasegawa,
    J. Phys. Chem. A, 123, 8907-8912 (2019)
    DOI:10.1021/acs.jpca.9b06374
  6. Selective Synthesis of Primary Anilines from NH3 and Cyclohexanones by Utilizing Preferential Adsorption of Styrene on the Pd Nanoparticle Surface
    Y. Koizumi, X. Jin, T. Yatabe, R. Miyazaki, J. Hasegawa, K. Nozaki, N. Mizuno, K. Yamaguchi,
    Angew. Chem. Int. Ed., 58, 10893-10897 (2019)
    DOI:10.1002/anie.201903841
  7. Spin-symmetry adaptation to the Monte Carlo correction configuration interaction wave functions
    Y. Ohtsuka,
    J. Chem. Phys., 151, 034115 (2019)
    DOI:10.1063/1.5108897
  8. Theoretical Study on the Rhodium-Catalyzed Hydrosilylation of C=C and C=O Double Bonds with Tertiary Silane
    L. Zhao, N. Nakatani, Y. Sunada, H. Nagashima, J. Hasegawa,
    J. Org. Chem., 84, 8552-8561 (2019)
    DOI:10.1021/acs.joc.9b00959
  9. Experimental and theoretical study of multinuclear Indium-oxo clusters in CHA zeolite for CH4 activation at room temperature
    Z. Maeno, S. Yasumura, C. Liu, T. Toyao, K. Kon, A. Nakayama, J. Hasegawa, and K. Shimizu,
    Phys. Chem. Chem. Phys., 21, 13415-13427 (2019)
    DOI:10.1039/C9CP01873E
  10. Adsorption Mediated Tandem Acid Catalyzed Cellulose Hydrolysis by Ortho-substituted Benzoic Acids
    D. P. De Chavez, M. Gao, H. Kobayashi, A. Fukuoka, J. Hasegawa,
    Mol. Catal., 475, 110459 (2019)
    DOI:10.1016/j.mcat.2019.110459
  11. SO2-tolerant Selective Catalytic Reduction of NOx over Meso-TiO2@Fe2O3@Al2O3 Metal-based Monolith Catalysts
    L. Han, M. Gao, J. Hasegawa, S. Li, Y. Shen, H. Li, L. Shi, and D. Zhang,
    Environ. Sci. Technol., 53, 6462-6473 (2019)
    DOI:10.1021/acs.est.9b00435
  12. Suppression of Pyrite Oxidation by Ferric-catecholate Complexes: An Electrochemical Study
    X. Li, M. Gao, N. Hiroyoshi, C. B. Tabelin, T. Taketsugu, and M. Ito,
    Minerals Engineering, 138, 226-237 (2019)
    DOI:10.1016/j.mineng.2019.05.005
  13. DFT Mechanistic Study on the Complete Oxidation of Ethylene by the Silica-Supported Pt Catalyst: C═C Activation via the Ethylene Dioxide Intermediate
    R. Miyazaki, N. Nakatani, S. V. Levchenko, T. Yokoya, K. Nakajima, K. Hara, A. Fukuoka, and J. Hasegawa,
    J. Phys. Chem. C, 123, 12706-12715 (2019)
    DOI:10.1021/acs.jpcc.9b00158
  14. Fe2O3-CeO2@Al2O3Nanoarrays on Al-Mesh as SO2-Tolerant Monolith Catalysts for NOx Reduction by NH3
    L. Han, M. Gao, C. Feng, L. Shi, and D. Zhang,
    Environ. Sci. Technol., 53, 5946-5956 (2019)
    DOI:10.1021/acs.est.9b01217
  15. CO2 Adsorption on Ti3O6–: A Novel Carbonate Binding Motif
    S. Debnath, X. Song, M. Fagiani, M. Weichman, M. Gao, S. Maeda, T. Taketsugu, W. Schollkopf, A. Lyalin, D. Neumark, and K. Asmis,
    J. Phys. Chem. C, 123, 8439-8446 (2019)
    DOI:10.1021/acs.jpcc.8b10724
  16. Direct synthesis of alternating polycarbonates from CO2 and diol by using a catalyst system of CeO2 and 2-furonitrile
    Y. Gu, K. Matsuda, A. Nakayama, M. Tamura, Y. Nakagawa, and K. Tomishige,
    ACS Sustainable Chem. Eng., 7, 6304-6315 (2019)
    DOI:10.1021/acssuschemeng.8b06870
  17. Soft X-ray Li-K and Si-L2,3 Emission from Crystalline and Amorphous Lithium Silicides in Lithium-ion Batteries Anode
    A. Lyalin, V. G. Kuznetsov, A. Nakayama, I. V. Abarenkov, I. I. Tupitsyn, I. E. Gabis, K. Uosaki, and T. Taketsugu,
    J. Electrochem. Soc., 166, A5362-A5368 (2019)
    DOI:10.1149/2.0551903jes
  18. A Combined Automated Reaction Pathway Searches and Sparse Modeling Analysis for Catalytic Properties of Lowest Energy Twins of Cu13
    T. Iwasa, T. Sato, M. Takagi, M. Gao, A. Lyalin, M. Kobayashi, K. Shimizu, S. Maeda, and T. Taketsugu,
    J. Phys. Chem. A, 123, 210-217 (2019)
    DOI:10.1021/acs.jpca.8b08868
  19. Constraint structure optimization to a specific minimum using ionization energy
    I. Harada, A. Nakayama, J. Hasegawa,
    J. Comput. Chem., 40, 507-514 (2019)
    DOI:10.1002/jcc.25738

2018

  1. Highly Efficient Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes with Fully Solution-Processed Organic Multilayered Architecture: Impact of Terminal Substitution on Carbazole-Benzophenone Dendrimer and Interfacial Engineering
    K. Matsuoka, K. Albrecht, A. Nakayama, K. Yamamoto, and K. Fujita,
    ACS Appl. Mater. Interfaces, 10, 33343-33352 (2018)
    DOI:10.1021/acsami.8b09451
  2. A First-Order Interacting Space Approach to Excited-State Molecular Interaction: Solvatochromic Shift of p -Coumaric Acid and Retinal Schiff Base
    K. Yanai, K. Ishimura, A. Nakayama, J. Hasegawa,
    J. Chem. Theory Comput., 14, 3643-3655 (2018)
    DOI:10.1021/acs.jctc.7b01089
  3. CuCl/TMEDA/nor-AZADO-catalyzed aerobic oxidative acylation of amides with alcohols to produce imides
    K. Kataoka, K. Wachi, X. Jin, K. Suzuki, Y. Sasano, Y. Iwabuchi, J. Hasegawa, N. Mizuno and K. Yamaguchi
    Chem. Sci., 9, 4756-4768 (2018)
    DOI:10.1039/C8SC01410H
  4. Lithiation Products of Silicon Anode Based on Soft X-ray Emission Spectroscopy: A Theoretical Study
    A. Lyalin, V. G. Kuznetsov, A. Nakayama, I. V. Abarenkov, I. I. Tupitsyn, I. E. Gabis, K. Uosaki, and T. Taketsugu,
    J. Phys. Chem. C, 122, 11096-11108 (2018)
    DOI:10.1021/acs.jpcc.8b00489
  5. Adsorption Energies of Carbon, Nitrogen, and Oxygen Atoms on the Low-temperature Amorphous Water Ice: A Systematic Estimation from Quantum Chemistry Calculations
    T. Shimonishi, N. Nakatani, K. Furuya, and T. Hama,
    Astrophys. J., 855, 27 (2018)
    DOI:10.3847/1538-4357/aaaa6a
  6. Quaternary Alkyl Ammonium Salt-Catalyzed Transformation of Glycidol to Glycidyl Esters by Transesterification of Methyl Esters
    S. Tanaka, T. Nakashima, T. Maeda, M. Ratanasak, J. Hasegawa, Y. Kon, M. Tamura, and K. Sato
    ACS Catal., 8, 1097–1103 (2018)
    DOI:10.1021/acscatal.7b03303

2017

  1. Catalytic Cyclopropanation by Myoglobin Reconstituted with Iron Porphycene: Acceleration of Catalysis due to Rapid Formation of the Carbene Species
    K. Oohora, H. Meichin, L. Zhao, M. Wolf, A. Nakayama, J. Hasegawa, N. Lehnert, and T. Hayashi
    J. Am. Chem. Soc., 139, 17265–17268 (2017)
    DOI:10.1021/jacs.7b10154
  2. Recyclable and Efficient Polyurethane-Ir Catalysts for Direct Borylation of Aromatic Compounds
    A. Kimura, H. Hayama, J. Hasegawa, H. Nageh, Y. Wang, N. Naga, M. Nishida, and T. Nakano
    Polym. Chem., 8, 7406-7415 (2017)
    DOI:10.1039/C7PY01509G
  3. Formation of a New Strong Basic Nitrogen Anion by Metal Oxide Modification
    M. Tamura, R. Kishi, A. Nakayama, Y. Nakagawa, J. Hasegawa, and K. Tomishige
    J. Am. Chem. Soc., 139, 11857–11867 (2017)
    DOI:10.1021/jacs.7b05227
  4. Photo-induced ß-Elimination of 9-Fluorenylmethanol Leading to Dibenzofulvene
    H. Nageh, L. Zhao, A. Nakayama, J. Hasegawa, Y. Wang, and T. Nakano
    Chem. Commun., 53, 8431-8434 (2017)
    DOI:10.1039/C7CC03297H
  5. Selected configuration interaction method using sampled first-order corrections to wave functions
    Y. Ohtsuka and J. Hasegawa
    J. Chem. Phys., 147, 034102 (2017)
    DOI:10.1063/1.4993214
  6. Selective Dehydration of Mannitol to Isomannide over H-Beta Zeolite
    H.Yokoyama, H. Kobayashi, J. Hasegawa, and A. Fukuoka
    ACS Catal., 7, 4828-4834 (2017)
    DOI:10.1021/acscatal.7b01295
  7. Hidden radical reactivity of the [FeO]2+ group in the H-abstraction from methane: DFT and CASPT2 supported mechanism by the example of model iron (hydro) oxide species
    V. Kovalskii, A. Shubin, Y. Chen, D. Ovchinnikov, S. Ruzankin, J. Hasegawa, I. Zilberberg, and V. N. Parmon
    Chem. Phys. Lett., 679, 193-199 (2017)
    DOI:10.1016/j.cplett.2017.05.002
  8. A Coordination Strategy to Realize a Sextuply Bonded Complex[Selected as Back Cover]
    Y. Chen, J. Hasegawa, K. Yamaguchi, and S. Sakaki
    Phys. Chem. Chem. Phys., 19, 14947-14954 (2017)
    DOI:10.1039/C7CP00871F
  9. Density matrix renormalization group (DMRG) method as a common tool for large active-space CASSCF/CASPT2 calculations
    N. Nakatani and S. Guo
    J. Chem. Phys., 146, 094102 (2017)
    DOI:10.1063/1.4976644
  10. Thermally activated delayed fluorescence OLEDs with fully solution processed organic layers exhibiting nearly 10% external quantum efficiency
    K. Albrecht, K. Matsuoka, D. Yokoyama, Y. Sakai, A. Nakayama, K. Fujita, and K. Yamamoto
    Chem. Commun., 53, 2439-2442 (2017)
    DOI:10.1039/C6CC09275F

2016

  1. Electronic Polarization Effect of the Water Environment in Charge-Separated Donor-Acceptor Systems: An Effective Fragment Potential Model Study
    K. Yanai, K. Ishimura, A. Nakayama, M. W. Schmidt, M. S. Gordon, and J. Hasegawa
    J. Phys. Chem. A, 120, 10273-10280 (2016)
    DOI:10.1021/acs.jpca.6b10552
  2. Gold nanoparticles on OMS-2 for heterogeneously catalyzed aerobic oxidative α, β-dehydrogenation of b-heteroatom-substituted ketones
    D. Yoshii, X. Jin, T. Yatabe, J. Hasegawa, K. Yamaguchi, and N. Mizuno
    Chem. Commun., 52, 14314-14317 (2016)
    DOI:10.1039/c6cc07846j
  3. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms
    G. K. -L. Chan, A. Keselman, N. Nakatani, Z. Li, and S. R. White
    J. Chem. Phys. 145, 014102 (2016)
    DOI:10.1063/1.4955108
  4. Spin-Blocking Effect in CO and H2
  5. Binding Reactions to Molybdenocene and Tungstenocene: A Theoretical Study on the Reaction Mechanism via the Minimum Energy Intersystem Crossing Point
  6. K. Watanabe, N. Nakatani, A. Nakayama, M. Higashi, and J. Hasegawa
    Inorg. Chem. 55, 8082-8090 (2016)
    DOI:10.1021/acs.inorgchem.6b01187
  7. A DFT and multi-configurational perturbation theory study on O2 binding to a model heme compound via the spin-change barrier
    Y. Kitagawa, Y. Chen, N. Nakatani, A. Nakayama, and J. Hasegawa
    Phys. Chem. Chem. Phys.18, 18137-18144 (2016)
    DOI:10.1039/C6CP02329K
  8. Highly Active and Robust Metalloporphyrin Catalysts for the Synthesis of Cyclic Carbonates from a Broad Range of Epoxides and Carbon Dioxide
    C. Maeda, J. Shimonishi, R. Miyazaki, J. Hasegawa, and T. Ema
    Chem. Eur. J. 22, 6556-6563 (2016)
    DOI:10.1002/chem.201600164
  9. Facile Synthesis of 1,4-Bis(diaryl)-1,3-butadiynes Bearing Two Amino Moieties by Electrochemical Reaction-Site Switching, and Their Solvatochromic Fluorescence
    N. Kamimoto, N. Nakamura, A. Tsutsumi, H. Mandai, K. Mitsudo, A. Wakamiya, Y. Murata, J. Hasegawa, and S. Suga
    Asian J. Org. Chem.
    5, 373-379 (2016)
    DOI:10.1002/ajoc.201500502

2015

  1. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study
    S. Arulmozhiraja, M. L. Coote, and J. Hasegawa
    J. Chem. Phys.143 , 204304 (2015)
    DOI:10.1063/1.4935578
  2. Platinum-catalyzed reduction of amides with hydrosilanes bearing dual Si–H groups: a theoretical study of the reaction mechanism
    N. Nakatani, J. Hasegawa, Y. Sunada, and H. Nagashima
    Dalton Trans.44 , 19344-19356 (2015)
    DOI:10.1039/C5DT02767E
  3. Total synthesis of palau’amine
    K. Namba, K. Takeuchi, Y. Kaihara, M. Oda, A. Nakayama, A. Nakayama, M. Yoshida, and K. Tanino
    Nat. Commun.6 , 8731 (2015)
    DOI:10.1038/ncomms9731
  4. Synergy of Vicinal Oxygenated Groups of Catalysts for Hydrolysis of Cellulosic Molecules
    H. Kobayashi, M. Yabushita, J. Hasegawa, and A. Fukuoka
    J. Phys. Chem. C
    119 , 20993-20999 (2015)
    DOI:10.1021/acs.jpcc.5b06476
  5. Energy dissipative photoprotective mechanism of carotenoid spheroidene from the photoreaction center of purple bacteria Rhodobacter sphaeroides
    S. Arulmozhiraja, N. Nakatani, A. Nakayama, and J. Hasegawa
    Phys. Chem. Chem. Phys.17 , 23468-23480 (2015)
    DOI:10.1039/C5CP03089G
  6. Computational Investigation into Photoswitching Efficiency of Diarylethene Derivatives: An Insight Based on the Decay Constant of Electron Tunneling
    S. Nishizawa, J. Hasegawa, and K. Matsuda
    J. Phys. Chem. C 119 , 20169-20178 (2015)
    DOI:10.1021/acs.jpcc.5b06738
  7. meso -Dibenzoporphycene has a Large Bathochromic Shift and a Porphycene Framework with an Unusual cis Tautomeric Form
    K. Oohora, A. Ogawa, T. Fukuda, A. Onoda, J. Hasegawa, and T. Hayashi
    Angew. Chem. Int. Ed. 54 , 6227-6230 (2015)
    DOI:10.1002/anie.201501496
  8. Quaternary ammonium hydroxide as a metal-free and halogen-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide
    T. Ema, K. Fukuhara, T. Sakai, M. Ohbo, F.-Q. Bai, and J. Hasegawa
    Catal. Sci. Technol.5 , 2314-2321 (2015)
    DOI:10.1039/C5CY00020C
  9. Theoretical Investigation on the Decaying Behavior of Exchange Interaction in Quinoid and Aromatic Molecular Wires
    S. Nishizawa, J. Hasegawa, and K. Matsuda
    J. Phys. Chem. C
    119 , 5117-5121 (2015)
    DOI:10.1021/jp511608w
  10. Excited-State Relaxation of Hydrated Thymine and Thymidine Measured by Liquid-Jet Photoelectron Spectroscopy: Experiment and Simulation
    F. Buchner, A. Nakayama, S. Yamazaki, H.-H. Ritze, and A. Lübcke
    J. Am. Chem. Soc. 137 , 2931-2938 (2015)
    DOI:10.1021/ja511108u
  11. Synthesis of yellow and red fluorescent 1,3a,6a-triazapentalenes and the theoretical investigation of their optical properties
    K. Namba, A. Osawa, A. Nakayama, A. Mera, F. Tano, Y. Chuman, E. Sakuda, T. Taketsugu, K. Sakaguchi, N. Kitamura, and K. Tanino
    Chem. Sci. 6 , 1083-1093 (2015)
    DOI:10.1039/C4SC02780A
  12. Matrix site effects on vibrational frequencies of HXeCCH, HXeBr, and HXeI: a hybrid quantum-classical simulation
    K. Niimi, T. Taketsugu, and A. Nakayama
    Phys. Chem. Chem. Phys.17 , 7872-7880 (2015)
    DOI:10.1039/C5CP00568J
  13. HXeI and HXeH in Ar, Kr, and Xe matrices: Experiment and simulation
    C. Zhu, K. Niimi, T. Taketsugu, M. Tsuge, A. Nakayama, and L. Khriachtchev
    J. Chem. Phys.142 , 054305 (2015)
    DOI:10.1063/1.4906875
  14. Quantum Mechanical Molecular Interactions for Calculating the Excitation Energy in Molecular Environments: A First-Order Interacting Space Approach
    J. Hasegawa, K. Yanai, and K. Ishimura
    ChemPhysChem 16 , 305-311 (2015)
    DOI:10.1002/cphc.201402635
  15. The ab-initio density matrix renormalization group in practice
    R. Olivares-Amaya, W. Hu, N. Nakatani, S. Sharma, J. Yang, and G. K.-L. Chan
    J. Chem. Phys. 142 , 034102 (2015)
    DOI: 10.1063/1.4905329

2014

  1. Versatile and Sustainable Synthesis of Cyclic Imides from Dicarboxylic Acids and Amines by Nb2O5 as a Base-Tolerant Heterogeneous Lewis Acid Catalyst
    M. A. Ali, S. M. A. H. Siddiki, K. Kon, J. Hasegawa, and K. Shimizu
    Chem. Eur. J. 20 , 14256-14260 (2014)
    DOI:10.1002/chem.201404538
  2. LiHe spectra from brown dwarfs to helium clusters
    N. F. Allard, A. Nakayama, F. Stienkemeier, J. F. Kielkopf, G. Guillon, and A. Viel
    Adv. Space Res. 54 , 1290-1296 (2014)
    DOI: 10.1016/j.asr.2013.08.032
  3. Bifunctional Porphyrin Catalysts for the Synthesis of Cyclic Carbonates from Epoxides and CO2: Structural Optimization and Mechanistic Study
    T. Ema, Y. Miyazaki, J. Shimonishi, C. Maeda, and J. Hasegawa
    J. Am. Chem. Soc.136 , 15270-15279 (2014)
    DOI:10.1021/ja507665a
  4. Quantum Chemical Investigations on the Nonradiative Deactivation Pathways of Cytosine Derivatives
    A. Nakayama, S. Yamazaki, and T. Taketsugu
    J. Phys. Chem. A 118 , 9429-9437 (2014)
    DOI:10.1021/jp506740r
  5. Excited States of a Significantly Ruffled Porphyrin: Computational Study on Structure-Induced Rapid Decay Mechanism via Intersystem Crossing
    F.-Q. Bai, N. Nakatani, A. Nakayama, and J. Hasegawa
    J. Phys. Chem. A 118 , 4184-4194 (2014)
    DOI:10.1021/jp502349h
  6. Adsorption and Catalytic Activation of the Molecular Oxygen on the Metal Supported h-BN
    A. Lyalin, A. Nakayama, K. Uosaki, and T. Taketsugu
    Top. Catal. 57 , 1032-1041 (2014)
    DOI:10.1007/s11244-014-0267-7
  7. Boron Nitride Nanosheet on Gold as an Electrocatalyst for Oxygen Reduction Reaction: Theoretical Suggestion and Experimental Proof
    K. Uosaki, G. Elumalai, H. Noguchi, T. Masuda, A. Lyalin, A. Nakayama, and T. Taketsugu
    J. Am. Chem. Soc. 136 , 6542-6545 (2014)
    DOI:10.1021/ja500393g
  8. Entropically Favored Adsorption of Cellulosic Molecules onto Carbon Materials through Hydrophobic Functionalities
    M. Yabushita, H. Kobayashi, J. Hasegawa, K. Hara, and A. Fukuoka
    ChemSusChem 7 , 1443-1450 (2014)
    DOI:10.1002/cssc.201301296
  9. Theoretical Investigation of the Dependence of Exchange Interaction on Dihedral Angle between Two Aromatic Rings in a Wire Unit
    S. Nishizawa, J. Hasegawa, and K. Matsuda

    Chem. Lett. 43 , 530-532 (2014)
    DOI:10.1246/cl.131115
  10. Investigation on CD Inversion at Visible Region Caused by a Tilt of the π-Conjugated Substituent: Theoretical and Experimental Approaches by Using an Asymmetric Framework of Diarylethene Annulated Isomer
    T. Hirose, Y. Inoue, J. Hasegawa, K. Higashiguchi, and K. Matsuda
    J. Phys. Chem. A 118 , 1084-1093 (2014)
    DOI:10.1021/jp4122694
  11. Linear response theory for the density matrix renormalization group: Efficient algorithms for strongly correlated excited states
    N. Nakatani, S. Wouters, D. Van Neck, and G. K.-L. Chan
    J. Chem. Phys.
    140 , 024108 (2014)
    DOI:10.1063/1.4860375
  12. Vibrational Shifts of HXeCl in Matrix Environments
    K. Niimi, A. Nakayama, Y. Ono, and T. Taketsugu
    J. Phys. Chem. A
    118 , 380-387 (2014)
    DOI:10.1021/jp411298p

2013

  1. Solvent effects on the ultrafast nonradiative deactivation mechanisms of thymine in aqueous solution: Excited-state QM∕MM molecular dynamics simulations
    A. Nakayama, G. Arai, S. Yamazaki, and T. Taketsugu
    J. Chem. Phys. 139 , 214304 (2013)
    DOI:10.1063/1.4833563
  2. Theoretical investigation of the β value of the π-conjugated molecular wires by evaluating exchange interaction between organic radicals
    S. Nishizawa, J. Hasegawa, and K. Matsuda
    J. Phys. Chem. C 117 , 26280-26286 (2013)
    DOI:10.1021/jp407452p
  3. Functionalization of Monolayer h-BN by a Metal Support for the Oxygen Reduction Reaction
    A. Lyalin, A. Nakayama, K. Uosaki, and T. Taketsugu
    J. Phys. Chem. C 117 , 21359-21370 (2013)
    DOI:10.1021/jp406751n
  4. Thouless theorem for matrix product states and subsequent post density matrix renormalization group methods
    S. Wouters, N. Nakatani, D. Van Neck, and G. K.-L. Chan
    Phys. Rev. B 88 , 075122 (2013)
    DOI:10.1103/PhysRevB.88.075122
  5. Nonprecious-Metal-Assisted Photochemical Hydrogen Production from ortho -Phenylenediamine
    T. Matsumoto, H.-C. Chang, M. Wakizaka, S. Ueno, A. Kobayashi, A. Nakayama, T. Taketsugu, and M. Kato
    J. Am. Chem. Soc. 135 , 8646-8654 (2013)
    DOI:10.1021/ja4025116
  6. Fragment-based configuration interaction wave function to calculate environmental effect on excited states in proteins and solutions
    J. Hasegawa
    Chem. Phys. Lett. 571 , 77-81 (2013)
    DOI:10.1016/j.cplett.2013.03.082
  7. Photophysics of cytosine tautomers: new insights into the nonradiative decay mechanisms from MS-CASPT2 potential energy calculations and excited-state molecular dynamics simulations
    A. Nakayama, Y. Harabuchi, S. Yamazaki, and T. Taketsugu
    Phys. Chem. Chem. Phys.15 , 12322 (2013)
    DOI:10.1039/c3cp51617b
  8. Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm
    N. Nakatani and G. K.-L. Chan
    J. Chem. Phys.138 , 134113 (2013)
    DOI:10.1063/1.4798639
  9. Absorption spectra of Na atoms in dense He
    N. F. Allard, A. Nakayama, F. Spiegelman, J. F. Kielkopf, and F. Stienkemeier
    Eur. Phys. J. D 67 , 1-8 (2013)
    DOI:10.1140/epjd/e2013-30523-x
  10. A multireference perturbation study of the NN stretching frequency of trans-azobenzene in npi* excitation and an implication for the photoisomerization mechanism
    Y. Harabuchi, M. Ishii, A. Nakayama, T. Noro, and T. Taketsugu
    J. Chem. Phys.138 , 064305 (2013)
    DOI:10.1063/1.4790611
  11. Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction
    A. Lyalin, A. Nakayama, K. Uosaki, and T. Taketsugu
    Phys. Chem. Chem. Phys. 15 , 2809 (2013)
    DOI:10.1039/c2cp42907a
  12. Excitation energy transfer in GFP-X-CFP model peptides (X = amino acids): Direct Versus through-bridge energy transfers
    T. Kawatsu and J. Hasegawa
    Int. J. Quantum Chem. 113 , 563-568 (2013)
    DOI:10.1002/qua.24027
  13. Theoretical investigation of the β value of the phenylene and phenylene ethynylene units by evaluating exchange interaction between organic radicals
    S. Nishizawa, J. Hasegawa, and K. Matsuda
    Chem. Phys. Lett. 555 , 187-190 (2013)
    DOI:10.1016/j.cplett.2012.10.092

Review Articles

  1. First-Principles Calculation of Photoexcited Electron Dynamics of Nanostructures
    Kenji Iida*, Masashi Noda
    Progress in Nanophotonics 7, 147, 1-35 (2022). 
    Takashi Yatsui (Ed.)
    DOI: 
    doi.org/10.1007/978-3-031-16518-4
  2.  「ナノ物質からなる不均一系の外場応答機構」
    飯田健二,
    Frontier, Journal of the Japan Society of Theoretical Chemistry, 3, 59-65 (2021)
  3.  ナノ界面系の光や電圧に対する応答の理論研究
    飯田健二,
    Mol. Sci., 14, A0110 (2020)
    DOI:10.3175/molsci.14.A0110
  4.  Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects
    L. Han, S. Cai, M. Gao, J. Hasegawa, P. Wang, J. Zhang, L. Shi, D. Zhang,
    Chem. Rev., 119, 10916-10976 (2019)
    DOI:10.1021/acs.chemrev.9b00202
  5.  Transition States of Spin-State Crossing Reactions from Organometallics to Biomolecular Excited States
    N. Nakatani, A. Nakayama, and J. Hasegawa,
    in “Frontiers of Quantum Chemistry” [URL] ,
    Wójcik, M.J., Nakatsuji, H., Kirtman, B., Ozaki, Y. (Eds.)
    289-314, Springer, Singerpore (2018)
  6.  触媒計算科学概観:理論計算はいかに活用できるか
    長谷川淳也
    触媒, 59(4), 176 (2017) [URL]
  7.  第一原理シミュレーションによる固体酸化物抵抗変化型メモリの動作機構の検討
    中山哲
    超精密加工専門委員会「超精密」 Vol. 22, p. 18-22, Dec. (2016)
  8. キャタリストインフォマティクス
    長谷川淳也
    CICSJ Bulletin, 34(4), 109-111 (2016)
    DOI:10.11546/cicsj.34.109
  9.  A QM/MM Study of Absorption Spectra of Uracil Derivatives in Aqueous Solution
    A. Nakayama
    AIP Conf. Proc.1790, 020018 (2016)
    DOI:10.1063/1.4968644
  10. 計算化学とデータ科学による触媒材料開発研究
    中山哲
    触媒 58(3), 175 (2016) [URL]
  11.  Theoretical Study on Highly Active Bifunctional Metalloporphyrin Catalysts for the Coupling Reaction of Epoxides with Carbon Dioxide
    J. Hasegawa, R. Miyazaki, C. Maeda, and T. Ema
    Chem. Rec.16, 2260-2267 (2016)
    DOI:10.1002/tcr.201600053
  12. マルチスケール・モデルによる複雑分子系の計算化学
    長谷川淳也
    化学 Vol.68 No.12, pp.12-16, (2013) [URL]